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Lattice Kinetic Formulation for Ferrofluids
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The lattice Boltzmann approach is used to solve continuum equations describ-
ing colloids of ferromagnetic particles (ferrofluids) in a regime, where the par-
ticle spins are in equilibrium with magnetic torques. This limit of rapid spin
adjustment yields a symmetric total stress tensor that is essential for a kinetic
formulation based on the Boltzmann equation. The magnetisation equation
is solved using a vector-valued distribution function analogous to the earlier
treatment (J. Comput. Phys. 179, 95) of the induction equation in magnetohy-
drodynamics, but the details are rather more complex because the magnetisa-
tion equation is not in conservation form except in a weakly magnetised limit.

KEY WORDS: Complex fluids; ferromagnetic liquids; lattice Boltzmann equa-
tions; magnetoviscosity; multiple relaxation time collision operators; polar
fluids.

1. INTRODUCTION

Ferrofluids are colloids of tiny (10 nm) single-domain ferromagnetic parti-
cles suspended in an insulating liquid such as toluene.! 3. First synthes-
ised in 1964, they have evolved from a laboratory curiosity to important
technological materials, with applications such as high-performance seals
and bearings. Ferrofluids also raise interesting questions in basic fluid
mechanics, since a continuum description of a ferrofluid sometimes requires
an asymmetric stress tensor, or couple stress. This arises from the torque
MxB exerted when the induced magnetisation M of the ferromagnetic
particles is inclined to the magnetic induction B. The usual argument for
symmetry of the stress tensor is incorrect for colloids. A volume of length-
scale L contains O(L3) suspended particles that are free to rotate relative
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Fig. 1. Suspended particles with individual spins in a ferrofluid.

to the fluid under magnetic torques, as sketched in Fig. 1, so its moment
of inertia scales as L3, rather than as L> as usually assumed. However, this
paper considers the rapid spin relaxation limit, for which the asymmetric
viscous and Maxwell stresses combine into a symmetric total stress.

The study of ferrofluids differs from magnetohydrodynamics (MHD)
that concerns itself with nonmagnetisable but electrically conducting flu-
ids, so the key ingredient is the Lorentz force JxB generated by flowing
currents J. While the magnetic manipulation of liquid metals, say, by the
Lorentz force is usually impractical due to resistive losses, these losses are
absent in insulating ferrofluids, where J=0. Their rheology is thus readily
manipulable by weak (10 mT) magnetic fields.

Lattice Boltzmann equations are becoming a very popular simula-
tion tool in fluid dynamics,*> but have attracted less attention in MHD.
The lattice Boltzmann approach expresses macroscopic quantities like fluid
density, velocity, or stress, as moments of a distribution function. Macro-
scopic evolution equations arise in turn from moments of the postulated
evolution equation for the distribution function, and naturally take the
form of the density evolving through the divergence of the momentum, the
momentum evolving through the divergence of a stress, and so on. Thus it
is straightforward to incorporate the Lorentz force due to a magnetic field
by adjusting the distribution function to obtain the magnetic contribution
to the total stress.(=8) Moreover, the viscous stress is also available from
the distribution function, and this may be manipulated to simulate non-
Newtonian fluids with shear-dependent viscosities,® and even some kinds
of viscoelastic behavior such as a Jeffreys viscoelastic fluid.(1?

However, the wusual scalar distribution function borrowed from
the kinetic theory of gases cannot describe evolution equations like
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B+ VxE=0 (see Section 2). An early formulation®” of MHD used
a tensor-valued distribution function for both fluid and magnetic quanti-
ties, and was subsequently modified to simulate ferrofluids in a weak mag-
netisation limit.'D This paper explores more general ferrofluid equations
based on the author’s reformulation of MHD® using a separate vector-
valued distribution function for B. In fact, a vector distribution function
had already been used!? to evolve the magnetisation in simulations of
nuclear magnetic resonance (NMR) in normal fluids like water, and var-
ious vector and tensor distributions have been used in continuum models
of liquid crystals.(13-14)

We follow standard ferrofluid conventions,(!) which differ somewhat
from conventional fluid dynamics and MHD. The symbol w is used for
intrinsic angular velocity or spin, which at equilibrium is /Aalf the usual
fluid vorticity, @~ %qu. In this context “spin” means rotation of the sus-
pended particles. It is also conventional to use Gaussian units in which the
magnetisation (6) retains a factor of 4.

2. LATTICE BOLTZMANN APPROACH TO HYDRODYNAMICS

The lattice Boltzmann approach to hydrodynamics expresses macro-
scopic quantities like density p, velocity u, and momentum flux II as
moments of an underlying distribution function f;(x, t):

=

N N
p=)_fi, pu=) Efi, M=) E&f, 0]
i=0 i=0

i=0

where the constant vectors &; correspond to particle velocities in kinetic
theory. Postulating evolution of the f; by the discrete Boltzmann-BGK
equation

oufivt V== (- 1), @

then implies mass and momentum conservation equations as moments of

)
p+V-(pu)=0, 3 (pu)+V-II=0, (3)
provided the equilibria fi(o) are chosen so that YN, fi«)) =p and

Z{V:()g,. fi(o) = pu. For suitable choices of the &; and fi(o), the implied con-
servation equations (3) may be shown to coincide with the compressible
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Fig. 2. Two-dimensional nine velocity (D2Q9) lattice for the fluid, and five velocity subset
(D2Q5) for the magnetic field.

Navier-Stokes equations in the slowly varying (small ) limit. In two dimen-
sions, the £; are most commonly chosen to form a square lattice as shown
in Fig. 2.

The difficulty with extending this approach to magnetohydrodynam-
ics, or ferrofluids, is that the momentum flux tensor IT appearing in (1)
and (3) is symmetric by definition. By contrast, the magnetic field B
evolves according to

3B+VxE=0, or &B+V-A=0, @)

where the flux A is an antisymmetric tensor with components Aqg =
—éapy Ey. It is thus impossible to obtain the correct induction equation (4)
from a moment of a scalar equation like (2). Rather than use a tensor-
valued distribution function for both fluid and magnetic variables,©7
Dellar® introduced a separate vector-valued distribution function g; such
that

N N
Bzzgi’ A=Z£,~gi, 3zgi+§,~-Vg,~=_%<gi_gl{0))_ 5)

i=0 i=0

This formulation was shown to be effective at simulating resistive MHD,
for which E = —uxB + nVxB, with resistivity n o< tzg. Although associat-
ing a vector with each lattice direction requires two or three times more
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storage than a scalar, it is possible to use fewer lattice directions with-
out destroying isotropy.® Five lattice vectors suffice in two dimensions,
as shown by the thick lines in Fig. 2, whereas nine lattice vectors for
the hydrodynamic distribution functions f; are necessary for an isotropic
viscous stress.

3. CONTINUUM DESCRIPTION OF FERROFLUIDS

In ferrofluids, it is important to distinguish between the magnetic
induction B and the magnetic field H. In a vacuum, the two are simply
related by B = uoH, where the constant of proportionality g is called
the permeability of free space. However, this simple relation is typically
lost when one averages the vacuum Maxwell equations, with their associ-
ated microscopic charges and currents at the atomic level, to derive mac-
roscopic or effective Maxwell equations for continuous media.(!>1® The
macroscopic quantity normally written B is the average of the microscopic
magnetic field, and satisfies V-B =0 because averaging commutes with
differentiation. To account for the average of the microscopic currents in
the inhomogeneous Maxwell equations, one typically relates H to B via

B=H+47M, (6)

in the Gaussian units commonly used in the ferrofluids literature. The vec-
tor M is the magnetisation, for which VxM is the effective current density
that arises from averaging the microscopic currents due to moving charges.
One may also interpret M as the average magnetic moment per unit vol-
ume in the continuum, which has the advantage of eliminating the gauge
uncertainty arising from equating only VxM with a physical quantity.

The macroscopic Maxwell equations for an insulating material are
then

V.B=0, VxH=0. )

We neglect Maxwell’s displacement current, as in magnetohydrodynamics,
since it is tiny for materials moving nonrelativistically. The macroscopic
current is then just VxH, which vanishes in insulating materials. The
magnetisation is negligible in the media usually treated in magnetohydro-
dynamics, so one typically just identifies B and H, and often writes the
current as VxB instead of VxH.
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The magnetisation M evolves according to the equation

1

™

where u and w are the fluid velocity and spin. This formula holds for
incompressible fluids, where V-u=0. The equilibrium magnetisation My is
usually modelled by the Langevin formula!-3

Mo=nmL(#)H, &=m|H|/kgT, L(&)=coth&—1/g, 9)

where H is a unit vector parallel to H, m is the magnetic moment of a
single ferromagnetic particle, and n the number density of particles. The
temperature is 7, and kg is Boltzmann’s constant, so the parameter & rep-
resents the ratio of the energy due to dipoles interacting with the magnetic
field to the thermal fluctuations tending to randomize dipole orientations.
Relaxation of the magnetisation with timescale 1y is due to a combina-
tion of Brownian motion and the Néel effect, i.e., physical rotation of the
ferromagnetic particles, and rotation of the magnetic dipole moments rel-
ative to stationary particles. The relative importance of these two effects
depends on the size of the particles.

The momentum flux may be written as II = puu — o, defining the devi-
atoric stress o. For polar materials like ferrofluids the usual linear momen-
tum equation

D .
pFl;ZV(GhydrO—}-dmdg), (10)

equivalent to (3), must be supplemented by a second equation for the spin,
or internal angular momentum-3

D
pID—(:=2§(qu—2a))+MxH. (11)

Here I represents the moments of inertia of all the ferromagnetic particles
in a unit volume. The spin viscosity ¢ represents the viscous drag on par-
ticles rotating relative to the surrounding fluid. The corresponding viscous
stress tensor for an incompressible fluid in our notation is!!?

hyd
oag = —pdap + s (dattp + dptta) +C €apy [V xu—20],, 12)
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where ug is the usual shear viscosity, and the extra antisymmetric term is
due to spin viscosity. Equivalent formulas appeared previously in a differ-
ent notation.® The Maxwell stress exerted by the magnetic field may be
written as®1®

1
oM = _—HH+MH — pyl, (13)
4

with magnetic pressure pm = H?/8m — 2w M?, after using (6) to eliminate
B.

While the equilibrium magnetisation My given by (9) is parallel to H,
the instantaneous magnetisation M need not be parallel to H. Thus the
magnetic stress (13) is generally asymmetric, like the spin viscous stress in
(12). This gives rise to the couple force MxH in the spin equation (11).

However, the timescale for  to adjust to equilibrium under (11) is
usually extremely short, 10~ s according to [3], so we may replace (11)
by the equilibrium approximation

1 1
w:Equ—i—EMxH. (14)

The total stress o™ 4 g™a2 then becomes symmetric,®!” which is cru-
cial for a lattice Boltzmann formulation of the momentum equation in the
form (3), as explained above. Combining the asymmetric terms from (12)
and (13), and using (14) to eliminate @, we find

1
[MH]g + ¢ €qpy[Vxu—2w], = My Hg — E;eaﬁy[MxH]y

1
= E(MaHﬁ“‘HaMﬁ)’ (15)
so the total stress becomes a symmetric tensor [3],

1 1
Oap = _(P+Pm)5aﬂ + EHaHﬁ + E(MaHﬂ +Honﬂ)

-}-/,Ls(aauﬁ—}-aﬁua). (16)
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4. HYDRODYNAMIC EQUILIBRIUM DISTRIBUTIONS

The usual nine velocity fluid equilibria!® may be determined by pro-
jecting the desired moments onto tensor Hermite polynomials.?? The rel-
evant expression, for the momentum flux 6pl+ puu, is

1 1
fl.(o):w,' <p+§§i'(PU)'Fﬁ(Ei‘Si_eI):(Puu))’ (17)

where the weights w; for the D2Q9 lattice shown in Fig. 2 are wy=4/9,
w12.34= 1/9, and ws.6.7,8 = 1/36.

This approach gives formulas® for the necessary terms to change the
equilibrium momentum flux M? by AII:

1

0
Afi()zwizgz

(&€, —0D): (ATT —6I(TrALD)). (18)

Recalling that II = puu— o, we obtain

1

0
A =gy

(& ME H+0o—1-1&HM-H), (19

from the AIl = —%(MH+HM) part of (minus) the Maxwell stress. This
formula holds in two dimensions, where Trl = 2. From the magnetic
pressure term we obtain

1
AS = w55 (1= 20) (&, - 26), (20)

again in two dimensions. These formulas are not unique, because the for-
mula (18) involves only six of the nine possible degrees of freedom in
the nine equilibrium distribution functions at each lattice point. However,
these formulas worked well for magnetohydrodynamics.

Notice that the desired change AIl in the momentum flux is con-
tracted with the symmetric tensor (§;§; —6l) in the formula (18) for the
change in the distribution function. Thus only the symmetric part of AII
can contribute to the distribution function. This is consistent with IT® =
Zf’zogi.s,- fi(o) being a symmetric tensor by construction.

Thus it is impossible to incorporate any asymmetric component of
the stress tensor into the equilibrium distribution in this way. Instead, one
must include the divergence of the antisymmetric part as an explicit body
force in the momentum equation. The body force will typically involve
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spatial derivatives of the field variables, and in general these must be cal-
culated by some finite difference or other approximation, instead of aris-
ing naturally through the streaming term &, -V f; in the Boltzmann—-BGK
equation (2). This approach has been used to approximate continuum
equations with asymmetric stresses that describe liquid crystals in various
regimes.(13-14)

5. LATTICE KINETIC MAGNETISATION EQUATION

Using the equilibrium approximation (14) for @, the magnetisation
equation (8) becomes

1 1 1
dM+u-VM = E(qu)xM—i- E(MXH)XM— —M-M, @1
™

with M@ = y (JH)H from (9). This equation is not in conservation form,
but one may eliminate derivatives of u in favor of derivatives of M:

1 1 1 1
M+V- (uM—-Mu+-(u-M) || = —uy VM — —uV-M
0r <u > u 2(u )) 2uk 2 2u
1 1 )
+—4§(M><H)><M——(M—M ),

™
(22)

where u; VM is the vector with ith component ud; My, or symbolically as

1
IM+VAY=—— M-M) 458, (23)

™

where S denotes the remaining source terms on the right-hand side of
equation (22).

By analogy with MHD® we postulate a vector distribution func-
tion g;,

N N
0 1
M=>"g. A=) &g, g§>=wi<M+5si-A<°>). (24)
i=0 i=0

The usual lattice Boltzmann relaxation time controls diffusion of M. This
effect should be very small, much smaller than the diffusivity implied
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by 1y, which suggests using a multiple relaxation time (MRT) collision
operatorD

1 1
%8 +§&  -Vgi=—— (gi - g§°>) - —w; (M—M(O)) +w;S. (25)
D ™

From the zeroth and first moments we get (at leading order)

1
AM+ VA = ——(M—M(O)) +8, (26)
™
1
HA® + V. (Z&-S,-g,“”) = ——(a-A0), 27)
B D
l

while the gradient of M is available from the non-equilibrium part of the
magnetisation distribution function to evaluate S,

A=AQ _ 9, VM + .- . (28)

The rearrangement (22) is required because the vorticity V xu is not avail-

able from I — M@, only the symmetric strain field Vu+ (Vu)T.
Constructing a fully discrete form of (25) is complicated by M not

being an invariant of the full collision operator, but only of the first term

(ggo) —g;)/to. Integrating (25) along a characteristic for time At gives

At
g (xX+& At t+At)—gi(X,1) =/ Ri(x+&;s,1+5)ds, (29)
0

where the right-hand side contains the source and relaxation terms from
(25). Approximating this integral with the trapezium rule gives

At
8 OHE AL 1+ AD—gi (X, 1) = = (R,- (X+E; AL, t+A1)+R; (X, t))

+0(AF). (30)
Since R;(-,t+ Ar) depends on g;(-,t + Ar), both through M and through

the non-equilibrium part involving VM, this system is implicit.
The usual procedure®? defines new variables

— / / / At / /
gi(x’t):gi(x/’t)_TRi(th)v (31)
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for which the previously implicit system (30) becomes fully explicit,

Tp At

I 3
AT Ri(x,1)+ 0(AF%).  (32)

g (xX+E AL t+A) -8 (X, 1)=—
However, reconstructing M from g; by summing (31) leads to

o) At At
Zg, M+—<M—M )——(ukVMk—uV-M)——(MxH)xM,
4 8¢
(33)

where the magnetisation gradient VM = —(A — A (VD)) /(01p) depends
linearly on M through the definition of A®. The field H and equilibrium
MO are further coupled to M through Maxwell’s equations, M = yH=
x(B+47xM), and x may depend on H and hence M as well. Solving the
system (33) at each lattice point for M thus typically requires Newton’s
method.

6. THE MAGNETOVISCOUS EFFECT IN POISEUILLE FLOW

Experiments>?) with Poiseuille flow of ferrofluids found that the flow
rate reduced in the presence of a steady magnetic field, an effect explained
theoretically®2% as the MxB torque resisting the necessary rotation of
fluid parcels in this vortical flow. We assume that all variables are func-
tions of the streamwise coordinate x only, and the fluid velocity is purely
in the y direction, u=uv(x)y. In this geometry the magnetostatic form of
Maxwell’s equations are readily solved as

H =B —4nM,=H" —47M,, Hy=H, (34)

where H® =B© is the imposed external field. Neglecting spin viscous
effects, the steady solution for the magnetisation M is

Moy HY —lQu,HY y _X(1+4nX)H§“’+%szme§“’ 5)
) I +dmy + 19227 iy 1 +4mx + 19272 7

where Q=09v/dx is the vorticity. Substituting into the streamwise momen-
tum equation, and dropping terms involving Q%72, we recover Poiseuille
flow with an increased effective fluid viscosity

m;

1 2 1 2
veff=v+zxfmyy<6> +fomH;€> /(1447 )2, (36)
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Fig. 3. Periodic channel flow computations illustrating the magnetoviscous effect for
imposed fields H= (4, 0) and H=(0, 1). Only half the channel is shown.

This is a nonequilibrium, or finite 7y, effect that cannot be captured by
equilibrium descriptions of ferrofluids.(!-3:24)

Figure 3 shows results from two numerical experiments. They were
conducted in a periodic channel, with a sinusoidal body force F sin(2wx)¥,
to avoid issues with diffusive boundary layers on the magnetisation at the
walls. The parameters were vy =1, x =1 (assumed constant), F=0.1, v=
0.1 in suitable dimensionless units, and a very small magnetic diffusivity
n=1/1600 that had no visible effect on the solutions. The corresponding
effective viscosities from (36) are ver=0.1217 for H® =4%, and ver=0.35
for H® =§. These values were used for the theoretical parabola in the
figure, and are in good agreement with the numerical results.

7. CONCLUSION

The vector-valued distribution function approach from MHD may be
extended to simulate the magnetisation equation (21) arising in ferrofluids,
even though in general the equation takes a non-conservation form involv-
ing the fluid vorticity V xu. This makes a lattice Boltzmann implementation
much more involved than for magnetohydrodynamics,® or for ferrofluids in
the weak magnetisation limit,!) where the VM terms are dropped. How-
ever, a “pure” or finite difference-free implementation is still possible using
the nonequilibrium magnetic distribution function A" to obtain the gradi-
ent VM.

The change of variables (31) resulting from integrating forcing terms
along characteristics becomes very clumsy when the forcing depends upon
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the variable being forced, especially nonlinearly. Alternatives based on
operator splitting for the time integration, as used by Salmon® for the
Coriolis force, are simpler, but gave much larger errors for a given time-
step. Another possibility would be to use a predictor—corrector method to
solve the implicit set of equations (29) arising from the trapezium rule,
without introducing the g; variables. This approach was used in Salmon’s
first treatment of the Coriolis force,?® and continues to be used in liquid
crystals. (!9

For general geometries and O(1) magnetisation, the magnetostatic
form of Maxwell’s equations (7) must be solved in parallel with the fluid
and magnetisation equations, although H is just the imposed field B¢ in
the weak magnetisation limit. In the geometry of Poiseuille flow the solu-
tion of Maxwell’s equations may be written down (34), allowing a simple
computation of the magnetoviscous effect. (32324
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